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Abstract. We investigate collective effects in the strong pinning model of disordered charge and spin density
waves (CDWs and SDWs) in connection with heat relaxation experiments. We discuss the classical and
quantum limits that contribute to two distinct contribution to the specific heat (a Cv ∼ T−2 contribution
and a Cv ∼ T α contribution respectively), with two different types of disorder (strong pinning versus
substitutional impurities). From the calculation of the two level system energy splitting distribution in the
classical limit we find no slow relaxation in the commensurate case and a broad spectrum of relaxation
times in the incommensurate case. In the commensurate case quantum effects restore a non vanishing
energy relaxation, and generate stronger disorder effects in incommensurate systems. For substitutional
disorder we obtain Friedel oscillations of bound states close to the Fermi energy. With negligible interchain
couplings this explains the power-law specific heat Cv ∼ T α observed in experiments on CDWs and SDWs
combined to the power-law susceptibility χ(T ) ∼ T−1+α observed in the CDW o-TaS3.

PACS. 71.45.Lr Charge-density-wave systems – 05.70.Ln Nonequilibrium and irreversible thermodynamics
– 63.50.+x Vibrational states in disordered systems – 75.30.Fv Spin-density waves

1 Introduction

There exist many examples of systems showing slow re-
laxation and ageing: spin glasses [1,2], disordered di-
electrics [3–5], supercooled liquids [6], etc. Charge den-
sity waves (CDWs) and spin density waves (SDWs) [7–10]
show “interrupted ageing” [11], meaning that there exists
an upper bound τmax to the relaxation times. The pro-
tocol of ageing experiments in CDWs and SDWs is the
following: the system is equilibrated at the temperature T
(one waits for a time longer than τmax). At time t = 0 the
temperature is changed from T to T +∆T where ∆T > 0
is very small compared to T . The temperature is kept con-
stant until the waiting time tw where it is brought back
to T . The heat flows between the CDW or SDW sample
and the cold source are recorded as a function of time.
Ageing in the thermal response takes place even for very
small values of ∆T . Since very small temperature varia-
tions are applied in the experiment it is reasonable to sup-
pose that the size of the correlated objects does not evolve
in time and that the thermal response is due solely to the
variation in the population of metastable states. This can
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be contrasted with the coarsening dynamics where the size
of correlated domains increases with time.

In a recent work [12] we applied the idea of dynam-
ical renormalization group [13,14] to calculate the spec-
trum of relaxation times of a model of disordered CDW
or SDW [15–24], including interactions among bisolitons.
A drawback of this approach [12] is that we supposed a
coarsening dynamics following a quench from high temper-
ature, a situation that is not realized in experiments, and
we were not able to address the waiting time dependence
of the relaxation time spectra. One goal of the present
article is to address these issues that were left open in
our previous work [12], and to put on a microscopic basis
the random energy-like (REM-like) trap model that was
proposed in reference [12], and inspired from trap models
developed for glasses and spin glasses [11,25].

More specifically we show here that heat relaxation ex-
periments can be described by assuming two types of de-
fects (strong pinning and substitutional impurities), corre-
sponding to the “classical” limit where the CDW or SDW
is viewed as a classical elastic medium with bisolitons gen-
erated by strong pinning impurities distributed at ran-
dom, and to the “quantum” limit where solitons due to
substitutional disorder interact quantum mechanically by
excitations of the gaped background. The existence of two
effects is in agreement with the experimental observation
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that the low temperature out-of-equilibrium specific heat
can be decomposed into three contributions: (i) the Cv ∼
1/T 2 tail of a Schottky anomaly at very low temperature
(typically for T � 100 ÷ 300 mK; the upper bound de-
pends on the amplitude of the 1/T 2 contribution); (ii) a
Cv ∼ Tα power-law specific heat with α � 0.3 ÷ 1.2 at
intermediate temperatures (0.1 � T � 1 K); and (iii) the
“trivial” contribution of phonons Cv ∼ T 3 at high tem-
perature (T � 1 K). By Schottky anomaly we mean that
the equilibrium specific heat of a two-level system with
energies E0 and E0 +∆E is given by

Cv(T ) =
(∆E)2

4T 2

1
cosh2 (∆E/2T )

, (1)

having a maximum (called a Schottky anomaly) at Tmax �
0.416∆E. The specific heat is approximately equal to
Cv � (∆E)2/4T 2 in the large temperature tail.

Following reference [23], the contribution (i) is inter-
preted in terms of two-level systems due to strong pinning
impurities. The contribution (ii) is interpreted as midgap
states interacting through Friedel oscillations. Friedel os-
cillations of a single impurity were probed directly by X-
ray diffraction experiments in reference [26]. Another ev-
idence in favor of the coexistence of strong pinning and
substitutional impurities is that the CDW compound o-
TaS3 can be doped by Nb, a substitutional impurity. This
changes only the amplitude of the Cv ∼ Tα contribution,
but leaves unchanged the Cv ∼ 1/T 2 contribution [27],
suggesting that the power-law contribution is related to
substitutional disorder. Even though not affected by sub-
stitutional disorder we do not interpret the Cv ∼ 1/T 2

as a property of the pure compound. A nuclear hyperfine
interaction can be excluded from the systematic study of
many different CDW compounds [7]. We thus relate the
Cv ∼ 1/T 2 contribution to strong pinning impurities [23],
even though the microscopic nature of these impurities
is not well understood experimentally (see Ref. [28] for a
study of ESR spectroscopy in o-TaS3).

The commensurate organic spin-Peierls compound
(TMTTF)2PF6 showing slow relaxation [29] con-
trasts with the inorganic spin-Peierls compound
Cu1−xZnxGeO3 [30–33] showing antiferromagnetic
ordering. We argue that the difference lies in the different
nature of disorder. Substitutional disorder relevant to
Cu1−xZnxGeO3 is qualitatively different from strong
pinning impurities in CDWs and SDWs. The spin-Peierls
compound Cu1−xZnxGeO3 has a fast dynamics, with a
“microscopic” time presumably comparable to the one of
spin glasses (τ0 � 10−12 s) whereas in CDW and SDW
compounds we have τ0 � 1 sec for the thermally activated
process. This indicates that rather different mechanisms
are at work, identified here are substitutional or strong
pinning disorder. We generalize to the incommensurate
case the model of substitutional disorder introduced
in reference [34]. In this model the solitons are due to
domain walls between two degenerate ground states
since the impurity site can be removed from the chain
(see Ref. [34] and Sect. 3), therefore leaving randomly
distributed domain walls in the chain from which the

impurities sites have been removed. The specificity of this
model (as opposed to the strong pinning model) is that
there are no metastable states of bisolitons like in the
strong pinning model. The substitutional impurities do
not contribute to the slow dynamics of bisolitons in the
strong pinning limit but are expected to contribute to
collective pinning of the phase of the density wave. How-
ever we consider here temperatures much lower than the
glass transition temperature [35,36] so that interactions
among solitons are the only remaining collective effects.
For substitutional disorder we find interactions among
solitons due to Friedel oscillations. We obtain similarly to
reference [34] a power-law specific heat Cv(T ) ∼ Tα and
a susceptibility χ(T ) ∼ T−1+α in agreement with existing
experiments on the CDW o-TaS3 [27].

The article is organized as follows. In Section 2 we
investigate a classical model of collective effects in a dis-
ordered CDW. Quantum effects are investigated in Sec-
tion 3. Final remarks are given in Section 4.

2 Classical limit (strong pinning impurities)

2.1 Hamiltonian

Let us start with a classical model of disordered
CDW [15–24]. To derive the 1D projection of the Hamil-
tonian of the phase of the CDW in the mean field approx-
imation we follow the recent review by Brazovskii and
Nattermann [24] and consider a system of coupled chains
with a phase ϕn(y) in chain n (y is the coordinate along
the chain axis).

H =
�vF

4π

∑

n

∫
dy

(
∂ϕn(y)
∂y

)2

(2)

+
∑

n,m

wm,n

∫
dy [1 − cos (ϕn(y) − ϕm(y))] (3)

−
∑

n,i

V
(n)
i

[
1 − cos

(
Qy

(n)
i + ϕn

(
y
(n)
i

))]
, (4)

where the sum in the last term runs over all impurities,
vF is the Fermi velocity along the chain axis, wm,n cor-
responds to the commensurate energy or interchain cou-
pling, V (n)

i is the pinning energy of the impurity num-
ber i in chain n, and Q = 2kF is the wave vector of the
CDW. Assuming dilute impurities we suppose that the
chain n = 0 with ϕ0(x) ≡ ϕ(x) is coupled to neighbor-
ing chains with ϕm(x) = 0. We arrive at the effective
1D Hamiltonian

H =
�vF

4π

∫
dy

(
∂ϕ(y)
∂y

)2

+ w

∫
dy [1 − cosϕ(y)]

−
∑

i

Vi [1 − cos (Qyi + ϕ(yi))] . (5)

Metastable states due to the competition between the
commensurate potential and the pinning energy were first
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discussed by Abe [19] in a different approach. Solitons
and the transition to a 3D density wave glass were dis-
cussed by Fukuyama [15], and bisolitons were discussed
by Larkin [22] and Ovchinikov [23].

2.2 No impurity: 2π-solitons

Without impurities there exist solutions minimizing the
energy (5) in which the the phase winds by ±2π within a
length ξ [15,22]:

tan
(
ϕ(y)

4

)
= tan

(
ψ

4

)
exp

(
±y
ξ

)
, (6)

where the soliton is centered at x0 = ±ξ ln (tan (ψ/4)).
The width of the soliton is

ξ =

√
�vF

2πw
. (7)

The energy ES of the soliton defined by equation (6) is
equal to 4wξ [15,22]:

ES = 2

√
2�vFw

π
. (8)

The energy ES can be viewed as the phase ordering
temperature. Nevertheless thermodynamic equilibrium is
not reached since the phase is frozen at a temperature
larger than ES due to collective pinning [21,35,36]. At
the very low temperature considered here the relevant ex-
citations are local deformations of the CDW in the form
of bisolitons.

2.3 One impurity: bisolitons

Minimizing the energy with respect to ϕ(y) leads to the
exact expression of the phase profile of the bisoliton asso-
ciated to an impurity located at position y1 with a pinning
potential V1:

tan
(
ϕ(y)

4

)
= tan

(
ψ

4

)
exp

(
−|y − y1|

ξ

)
, (9)

where ψ is such that

sin
(
ψ

2

)
=
πV1ξ

2�vF
sin (α1 + ψ), (10)

with α1 = Qy1. The bisoliton has a decay length given by
equation (7). There can be several solutions to the match-
ing equation (10), corresponding to metastable states sep-
arated by energy barriers [22,23].

2.4 A finite concentration of impurities

2.4.1 Transition to a 3D density wave glass

The problem of a finite concentration of impurities was
treated in reference [12] within dynamical renormalization
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Fig. 1. Schematic representation of the spatial variation of
the phase ϕ(y) along a chain. (a) A 2π soliton varying over
a length ξ. (b) A bisoliton [22] (superposition of a 2π-soliton
and a 2π-anti soliton) varying over a length ξ generated by one
strong pinning impurity. (c) Randomly distributed bisolitons
generated by the clustering of strong pinning impurities for
xξ � 1. (d) Density wave glass for xξ � 1. The filled squares
represent the impurities.

group (RG) describing a quench from high temperature.
The first step was to consider two bisolitons at distance R.
If R is much larger than ξ then the two bisolitons are inde-
pendent from each other and have independent dynamics.
If R is much smaller than ξ there is a single bisoliton
pinned by two impurities, with a longer relaxation time
than two independent solitons. The case of intermediate
values of R was treated approximatively by an exponen-
tial interpolation between the limiting cases R � ξ and
R � ξ. In the following we consider a simplified model
where the pinning energy is additive for all values of R
smaller than ξ, whereas the two bisolitons are indepen-
dent from each other for all values of R larger than ξ.
Considering not only two impurities but a finite concen-
tration of impurities distributed at random in 1D, this
defines clusters of impurities: two neighboring impurities
at distance R belong to the same cluster if R < ξ, and
belong to two different clusters if R > ξ.

The probability to find Nimp ≥ 1 impurities in a given
cluster follows the exponential distribution

P(Nimp) = exp (−xξ) [1 − exp (−xξ)]Nimp−1
, (11)

where x is the impurity concentration. The average num-
ber of impurities within a given cluster is equal to exp (xξ).
For xξ � 1 the number of impurities in a given cluster
becomes very large so that the phase is effectively frozen
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because of large energy barriers. In this regime the system
becomes a 3D density wave glass [15] and our treatment
(valid if xξ � 1) based on the crude 1D mean field model
breaks down.

We suppose in the following that the only 3D effect is
this Larkin-Ovchinikov [22,23] level splitting mechanism.
We start from the limit of very dilute impurities and in-
crease progressively the concentration. The crude mean
field model is expected to describe well localized excita-
tions in the dilute limit xξ � 1 but at large scale and tem-
peratures higher than the one considered here the system
becomes a 3D elastic medium with different properties
that we do not discuss in the following. For instance the
impurity perturbation decays as a power-law if D > 1 (see
Ref. [24]).

2.4.2 Multi-impurity energy landscape

We suppose that the phase is almost constant and equal
to ψ in the middle of a bisoliton and note X ≡ tan (ψ/4).
The elastic energy corresponding to the second term of
equation (5) is independent on the number Nimp of impu-
rities because it arises from the two sides of the bisoliton
profile where ∂ϕ(y)/∂y is important. The pinning energy
is additive because each impurity brings its own pinning
energy.

The energy landscape of a cluster of Nimp impurities
generalizing reference [12] is given by

E(X) = 16wξ
X2

1 +X2

− 2
Nimp∑

i=1

Vi

[
sin

(αi

2

)1 −X2

1 +X2
+ cos

(αi

2

) 2X
1 +X2

]2

,

(12)

where the elastic and commensurate energies in the first
term are much smaller in magnitude than the pinning en-
ergy, but play a role in lifting the degeneracy of the effec-
tive two level system.

To illustrate equation (12) we show that minimiz-
ing with respect to X for impurities at a distance much
smaller than ξ is equivalent to solving the sine-Gordon
equation in the presence of the pinning term. Let us con-
sider Nimp impurities at positions y1, ..., yNimp and denote
by ψ1, ..., ψNimp the value of the phase at the points y1, ...,
yNimp. The solution with the appropriate boundary condi-
tions is

tan
(
ϕ(y)

4

)
= tan

(
ψ1

4

)
exp

(
y − y1
ξ

)
(13)

for y < y1, and

tan
(
ϕ(y)

4

)
= tan

(
ψ1

4

)
exp

(
−y − yNimp

ξ

)
(14)

for y > yNimp. The derivative of ϕ(y) is discontinuous at
the position of the impurities:

∂ϕ

∂y
(y+

k ) − ∂ϕ

∂y
(y−k ) =

2πVk

�vF
sin (αk + ψk). (15)
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Fig. 2. Schematic representation of the energy landscape
in the commensurate case (a) and in the incommensurate
case (b). The ground state is at energy E0. The metastable
state is at energy E0 + ∆E, where ∆E is the splitting. The
unstable “bounce” state is at energy E0 + ∆V where ∆V is
the energy barrier.

Assuming that ψ is almost constant we obtain

sin
(
ψ

2

)
=

πξ

�vF

Nimp∑

k=1

Vk sin (αk + ψ), (16)

generalizing equation (10). Solving ∂E(X)/∂X = 0 with
E(X) given by equation (12) and X = tan (ψ/4) leads
directly to equation (16).

2.5 Properties of the energy landscape

The energy landscape E(X) given by (12) describes a
ground state, separated from a metastable state by an
energy barrier. There might be more than two energy min-
ima for some realizations of disorder [22,23]. In this case
we restrict the energy landscape to the ground state and to
the energy minimum separated from the ground state by
the lowest energy barrier. We note ∆E the difference be-
tween the energies of the metastable state and the ground
state and ∆V the energy barrier (see Fig. 2).

2.5.1 Commensurate case

In the dimerized case (Q = π, α = 0) ∆E is equal to zero
since the energy landscape is symmetric under a change of
sign of the “coordinate” X . This can be seen from equa-
tion (12) by noting that cos (αi/2) = ±1, sin (αi/2) = 0
if Qxi = 2πn, with n an integer, and cos (αi/2) = 0,
sin (αi/2) = ±1 if Qxi = (2n+1)π, with n an integer. The
degeneracy can also be seen directly from equation (16)
that, in the commensurate case Q = π, becomes

cos
(
ψ

2

)
=



 2πξ
�vF

Nimp∑

k=1

Vk cosαk




−1

. (17)

If ψ is a solution then −ψ is also a solution, explaining
the degeneracy. The degeneracy can be also understood
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Fig. 3. Distribution of level splitting ∆E for the model with
random phases discussed in Section 2.4. The impurities are
distributed at random on a chain of length ξ. The impurity
concentration is such that the average number of impurities is
N imp = xξ = 1. The curves corresponding to xξ = 0.5 and
xξ = 5 are superposed on the curves corresponding to xξ = 1.
The pinning potentials Vi are uniformly distributed in the in-
terval [0, V0] with V0 indicated on the figure. The distribu-
tion of level splitting normalized to 4ES is almost independent
on wξ and V0, chosen such that 4ES � V0. The dashed line
corresponds to P (z) = 1/[2

√
1 − z], with z = ∆E/4ES (see

Eq. (18)).

by noting that the transformation ϕ(x) → −ϕ(x) is a
symmetry of the pure system, that is preserved by the
pinning term for commensurate impurities but not for in-
commensurate impurities.

In the commensurate case it is thus not possible to
communicate energy over long time scales to the effective
two-level system by increasing temperature. The classi-
cal model predicts no slow relaxation at all in the com-
mensurate case whereas in experiments there exists slow
relaxation, even though faster than in the incommensu-
rate compound [29]. Adding quantum tunneling between
the two energy minima of the energy landscape can gen-
erate two non degenerate energy levels corresponding to
symmetric and antisymmetric wave functions, therefore
restoring a finite heat response.

2.5.2 Energy splitting distribution in the incommensurate
case

The distribution of energy splitting is shown in Figure 3.
The distribution of splitting is close to

P

(
∆E

4ES

)
� 1

2

(
1 − ∆E

4ES

)−1/2

. (18)

The most probable level spacing is close to 4ES , indepen-
dent on the value of the pinning potential and on the num-
ber of impurities involved in the bisoliton, showing that

the shape of P (∆E/4ES) is almost unchanged when the
concentration of impurities increases. The energy splitting
distribution (18) can be understood in the case of a single
soliton by noting that the pinning energy is much larger
than the elastic energy so that the elastic term can be
treated as a perturbation. There are four values of X min-
imizing the pinning energy:

X
(ε)
0 =

ε− sin (α/2)
cos (α/2)

(19)

X
(ε)
1 =

ε+ cos (α/2)
sin (α/2)

, (20)

with ε = ±1. The pinning energy of the solution (19) is
Epin(X

(ε)
0 ) = −2V , and the pinning energy of the solu-

tion (20) is Epin(X
(ε)
1 ) = 0. The elastic energy of the solu-

tion X(ε)
0 is Eel(X

(ε)
0 ) = 2ES(1 − ε sin (α/2)). The energy

splitting Eel(X
(−)
0 )−Eel(X

(+)
0 ) is then distributed accord-

ing to equation (18) since α is uniformly distributed.
The existence of the upper bound 4ES in the energy

splitting distribution is compatible with the experimental
observation of a high temperature tail Cv ∼ 1/T 2 of a
Schottky anomaly in the equilibrium specific heat, with a
well-defined level splitting. Experimentally the level split-
ting ∆E0 of a two-level system is related to the tempera-
ture Tmax of the maximum of the Schottky anomaly by the
relation ∆E0 � 2.5kBTmax. It was shown experimentally
that Tmax < 30 mK [9] so that ∆E0 = 4ES � 100 mK.
The existence of a well-defined level splitting in experi-
ments is a universal property, valid for commensurate and
incommensurate systems, and independent on the value
of the CDW or SDW critical temperature that can vary
by more than one order of magnitude from one compound
to the other (TPeierls = 218 K for o-TaS3, TSDW = 12 K
for (TMTSF)2PF6, TSP = 15 K for the spin-Peierls com-
pound (TMTTF)2PF6, TAF = 13 K for the antiferromag-
net (TMTTF)2Br). This is compatible with the fact that
∆E0 is related only to the strength w of interchain inter-
actions and the Fermi velocity vF :

∆E0 = 4ES =
16√
2π

√
�vFw, (21)

where vF has the same magnitude for several com-
pounds (for instance vF = 0.86 × 107 cm s−1 in
(TMTSF)2PF6 [37]) and interchain couplings are also ex-
pected to take similar orders of magnitude, from what we
deduce that ∆E0 is almost identical in all samples, in-
dependent on the charge or spin gap. The energy ∆E0 is
proportional to the elastic energy ES of a 2π-soliton in the
absence of impurities, not to be confused with the activa-
tion energy EA of the order of 100 K probed in transport
experiments [38]. There is thus no inconsistency in the dif-
ference between the orders of magnitude of EA and ES .

2.5.3 Distribution of energy barriers

The distribution of energy barriers P (∆V/V0) is well fit-
ted by an exponential function (see Fig. 4). The average
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Fig. 4. Distribution of the dimensionless energy barrier ∆V/V0

in the cluster model. We use xξ = 0.5, 1, 1.5, kF = π/2 +
0.02. The pinning potentials Vi are uniformly distributed in
the interval [0, V0] with V0 = 50. The solid lines correspond to
the fits P (∆V/V0) = 1.45×exp (−0.76 × ∆V/V0) for xξ = 0.5,
P (∆V/V0) = 2.25 × exp (−1.04 × ∆V/V0) for xξ = 1, and
P (∆V/V0) = 6 × exp (−1.61 × ∆V/V0) for xξ = 1.5.

relaxation time defined as

τ0

∫
d(∆V )P (∆V )τ0 exp (∆V/T ), (22)

with T the temperature diverges at a finite temperature,
like in the REM-like trap model [11]. However this model,
useful for discussing waiting time effects, over evaluates
glassiness compared to the dynamical RG already dis-
cussed in reference [12] (see Sect. 2.7).

2.6 Out-of-equilibrium specific heat

To evaluate energy relaxation in the incommensurate case,
we restrict the energy landscape to the ground state, the
metastable state and the unstable “bounce” state at the
top of the barrier. We are left with a two-state trap model
with energies −E1 and −E2 (with E1 > E2). E1 is equal to
the barrier ∆V calculated in the preceding section and E2

is equal to the barrier ∆V minus the splitting ∆E. The
unstable state is at zero energy. We note P1(t) (P2(t))
the probability to be in state “1” (“2”) at time t and
note P̃1,2(t) = P1,2(t) exp (−E1,2/2T ). The evolution of
the probabilities is given by Glauber dynamics [39]

τ0
d

dt

[
P̃1

P̃2

]
= Ĝ

[
P̃1

P̃2

]
, (23)

with G1,1 = − exp (−E1/T ), G2,2 = − exp (−E2/T ),
G1,2 = G2,1 = exp (−(E1 + E2)/2T ). Experimentally the
time τ0 associated to bisoliton dynamics is of order of 1 s
for the thermally activated process. The time dependence
of the occupation probabilities P1(t) and P2(t) is obtained
by diagonalizing the 2×2 matrix Ĝ, from what we deduce
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C
vto

t (t
w

,T
)

log10(T / 4 ES)

T-2

Fig. 5. Variation of the out-of-equilibrium total specific
heat as a function of log10(T/4ES), for different values of
tw/τ0: log10(tw/τ0) = −2 (�), log10(tw/τ0) = −1.2 (�),
log10(tw/τ0) = −0.4 (◦), log10(tw/τ0) = 0.4 (•). log10(tw/τ0) =
1.2 (�). We used xξ = 1. The pinning potentials Vi are uni-
formly distributed in the interval [0, V0] with V0/ES = 12.5.
The specific heat for long tw/τ0 follows a 1/T 2 behavior for
T/4ES � 1, where ES is the energy of a soliton. The solid line
represents the Cv ∼ T−2 behavior.

the value of the energy U(tw, tw +τ, T ) as a function of the
waiting time tw, the time τ elapsed since the waiting time
and temperature T . The out-of-equilibrium total specific
heat is defined as the total heat released divided by the
temperature variation:

Ctot
v (tw, T ) =

U(tw, tw, T +∆T ) − U(0, 0, T )
∆T

. (24)

The dynamics equations can be solved exactly in the case
of a single two-level system with energies −E1 and −E2

and expanded in the high temperature regime T � |E1 −
E2|, leading to the specific heat

Cv =
(E1 − E2)2

4T 2

×
[
1 − exp

[
− tw
τ0

[
exp

(
−E1

T

)
+ exp

(
−E2

T

)]]]
,

(25)

proportional to 1/T 2, as expected for the high temper-
ature tail of a Schottky anomaly. Increasing the wait-
ing time increases the energy transfered to the two-
level system and therefore increases the amplitude of the
1/T 2 term.

The variations of the out-of-equilibrium total specific
heat Ctot

v (tw, T ) as a function of temperature T for dif-
ferent values of the waiting time tw are shown in Fig-
ure 5 for a finite concentration of incommensurate impu-
rities. At temperatures larger than the maximal splitting
∆E = 4ES the out-of-equilibrium specific heat follows
a 1/T 2 behavior. The out-of-equilibrium specific heat is
strongly reduced as the waiting time decreases but still
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Fig. 6. Spectrum of relaxation times deduced from energy re-
laxation (see Eq. (27)). We use V0/4ES = 12.5, T/4ES = 400,
and xξ = 1. The pinning potentials Vi are uniformly dis-
tributed in the interval [0, V0]. The waiting times correspond
to log10(tw/τ0) = 2.4 (�), 7.2 (�), 12 (•), 16.8 (◦), 21.6 (�).
The solid line is a fit to log10(P (log10 τ )) = a + b log10 τ , with
b = −0.083.

follows a 1/T 2 behavior, in a qualitative agreement with
experiments (see Fig. 3 in Ref. [9]).

2.7 Spectrum of relaxation times

Let U(tw, tw + τ, T ) be the energy of the two-level system
at time t = tw +τ , with a heat pulse applied between t = 0
and t = tw. The spectrum of relaxation times is deduced
from U(tw, tw + τ, T ) by assuming that

U(tw, tw + τ, T ) =
∫
Ptw (ln τ ′) exp (−τ/τ ′)d ln τ ′. (26)

Replacing the exponential by a step-function leads to the
relaxation time spectrum [1]

Ptw (ln τ) ∝ ∂U(tw, tw + τ, T )
∂ ln τ

. (27)

We have shown in Figure 6 the spectra of relaxation times
Ptw (ln τ) for xξ = 1. Similar results are obtained for
xξ = 0.5 and xξ = 1.5, with however a different value
of the exponent of the power-law. The long time tail of
the spectrum is a power-law, in agreement with experi-
ments (see Ref. [12]). As the waiting time increases the
power-law regime extends to ever longer times without
limits, compatible with the existence of a genuine glass
transition that is an artifact of this clustering model.

For comparison we have also calculated the relaxation
time spectra obtained from dynamical RG (see Fig. 7).
The calculation is identical to reference [12]: we suppose
a quench from high temperature at time t = 0. The small
time degrees of freedom are progressively eliminated, mak-
ing bigger object that relax more slowly. In this approach
the energy landscape of two impurities at distance R is
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Fig. 7. Spectrum of relaxation times deduced from dynamical
renormalization group. We use V0/4ES = 12.5, T/4ES = 400,
and xξ = 1.5 (�), xξ = 1 (•) and xξ = 0.5 (�). The pinning
potentials Vi are uniformly distributed in the interval [0, V0].
The solid line is a fit to log10(P (log10 τ )) = a + b log10 τ , with
b = −0.23 for xξ = 1.5, b = −0.21 for xξ = 1 and b = −0.17
for xξ = 0.5. We carried out simulations with larger system
sizes and found practically no finite size effects on the data on
this figure.

interpolated between the two limiting cases R � ξ and
R� ξ so that the phase fluctuations are more important
compared to the previous clustering model. Impurities can
thus be depinned in sequence, not necessarily all together.
We obtain also a power-law relaxation but (i) the expo-
nent of the power-law spectrum of relation times is dif-
ferent from the clustering model (smaller relaxation times
are favored), and (ii) ageing is “interrupted” for the clus-
tering model (there exists a maximal relaxation time). As
expected the clustering model discussed previously over
evaluates glassiness but is nevertheless useful for address-
ing qualitatively waiting time effects that could not be
discussed within dynamical RG. Experiments favor inter-
rupted ageing with respect to a genuine dynamical glass
transition (see Ref. [12] for an analysis of experiments
based on a REM-like model that is justified microscop-
ically by the dynamical RG approach).

3 Quantum limit (substitutional and strong
pinning impurities)

3.1 Preliminaries

We base the discussion in this section on the electronic
part of the Peierls Hamiltonian. We discuss a model of
spinless disordered CDW where there is only a charge
sector, expected to be equivalent to a model of insulat-
ing SDW where there is only a spin sector. We expect
this simplified models to capture part of the properties of
real compound in which there is a gap in both the spin
and charge channels. The analogy between the CDW case
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Fig. 8. Schematic representation of a dimerized CDW chains
with open boundary conditions with one impurity (a) or two
impurities (b). The double lines represent the strong bonds
t+ε. (b) corresponds to R = yβ−yα odd. We represented on (c)
two substitutional impurities (black square) leaving unpaired
fermions at sites α and β. (d) corresponds to the chain where
the impurity sites have been removed [34]. (e) shows the spatial
variation of the phase corresponding to the chain (d).

with only a charge channel and the SDW case with only
a spin channel is based on the fact that one dimensional
tight binding models can be mapped onto XX magnets
in one dimension through a Jordan-Wigner transforma-
tion. It was shown explicitly in the dimerized case that the
properties of substitutional disorder are almost identical
for the XX and Heisenberg models [34] in spite of interac-
tions between Jordan-Wigner fermions in the Heisenberg
case. We expect this similarity to be valid also in the in-
commensurate case.

Quantum effect were already discussed in reference [21]
but here we work within a different microscopic model that
was proved to be useful in the case of doped spin-Peierls
systems [34], and generalize it to the case of incommensu-
rate CDWs. Substitutional disorder in a spin-Peierls sys-
tem (relevant to Cu1−xZnxGeO3 [30–33]) is qualitatively
equivalent to impurities that break the chains into finite
length segments (see Ref. [34] and Sect. 3.3). We have
shown in Figure 8 a schematic representation of substi-
tutional impurities in dimerized chains. The phase of the
dimerization changes by π in the chain where the site of
the impurity has been removed. For a CDW or SDW with
a wave-vector Q = 2kF the phase changes by Qa0 once
the impurity sites have been removed, where a0 is the lat-
tice parameter. The absolute value of the amplitude of the
CDW is supposed to remain constant. The solitons gener-
ated by the substitutional disorder that we consider here
are thus phase solitons, connecting two degenerate ground
states with different phases. One can cross-over continu-
ously from edge states in the limits tα,α′ = tβ,β′ = 0
to solitons connecting two ground states as the parame-
ters tα,α′ and tβ,β′ are increased.

There is a flat classical energy landscape in the case of
open chains for the model defined by equation (5) in the
limit w = 0. The classical Hamiltonian is just (5) on an
open chain, without the pinning term:

H =
�vF

4π

∫ L

0

dy

(
∂ϕ(y)
∂y

)2

+ w

∫ L

0

dy [1 − cosϕ(y)] , (28)

that has no bisoliton metastable states like in the preced-
ing section (the ground state is ϕ(y) = 0). The bound
state associated to a single substitutional impurity in the
quantum model defined by the Peierls Hamiltonian

H =
∑

i

[t+ ε cos (2kF yi)]
[
c+i+1ci + c+i ci+1

]
, (29)

is thus at the lowest possible energy (exactly in the middle
of the gap). The variable t in equation (29) is equal to
the average hopping amplitude and ε is the amplitude of
the modulation. The variable yi in equation (29) is the
coordinate of the site number i: yi = ia0, with a0 the
lattice parameter. The bound state due to substitutional
disorder can be occupied by an electron and a hole with
an equal probability, and there is a fast dynamics of the
occupation probability since there are no energy barriers
in the classical limit. Like in spin glasses mostly governed
by RKKY interactions it is expected that the “microscopic
time” τ0 is extremely small (τ0 � 10−12 s in spin glasses).
By contrast there is slow dynamics with τ0 � 1 s in the
case of the organic spin-Peierls compound (TMTTF)2PF6,
well described by the classical model discussed previously.

The width of a soliton in the quantum limit is equal to

ξ0(E) =
2�vF√
∆2 − E2

, (30)

where E is the energy,∆ is equal to the Peierls gap and vF

is the Fermi velocity in the absence of lattice distortions.
ξ0 is different from the soliton or bisoliton width in the
classical limit ξ =

√
�vF /2πw discussed in the preceding

section. In the classical model one should incorporate in-
terchain interactions for the soliton or bisoliton to have a
finite width whereas in the quantum model the zero energy
soliton width is finite in the absence of interchain interac-
tions. Experimentally the slow relaxation properties asso-
ciated to the 1/T 2 tail of the specific heat are independent
on the value of the gap ∆ and of the transition tempera-
ture that can vary by more than one order of magnitude.
In the case of the SDW (TMTSF)2PF6 the BCS-like re-
lation ∆ � 1.7Tc is well verified (Tc = 11.5 ÷ 12 K and
∆ = 20 K from NMR [40]). The Fermi velocity [37] is
vF � 0.86 × 107 cm s−1 so that ξ0 = 2�vF /∆ � 90a0,
with the lattice parameter a0 = 7.3 Å. In the case of o-
TaS3 we do not have a precise data for vF and we take
vF = 107 cm s−1 as a typical value. We have T (CDW)

c =
215 K and ∆CDW = 3.73Tc � 780 K so that ξ(CDW)

0 = 6a0

with a0 = 3.34 Å. However it is likely that there is also
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a smaller spin gap since the spin susceptibility follows a
power-law. An energy scale E = 30 K can be estimated
from the deviations of the power-law. Assuming that the
power-law susceptibility is due to randomly distributed
magnetic moments we identify the energy scale E to the
average exchange energy Jav = ∆xξ with xξ = 0.3 esti-
mated from the power-law susceptibility (see Sect. 3.3.2)
so that ξ(spin)

0 = 150 ÷ 450a0. ξ
(spin)
0 in the SDW com-

pound (TMTSF)2PF6 and o-TaS3 are thus one order of
magnitude larger than ξ0 in the spin-Peierls compound
CuGeO3.

3.2 Strong pinning impurities

3.2.1 Dyson matrix

The quantum model given by equation (29) can also be
used to treat strong pinning impurities, not only substi-
tutional disorder. The Hamiltonian is equal to (29), plus
a term describing the impurity potential:

Himp = −
∑

i

Vyic
+
yi
cyi , (31)

where the strong pinning impurities are located at random
positions {y1, ..., yNimp}. We suppose that Vyi = V is the
same for all impurities and that V > 0. We note G(E)
the Green’s function at energy E in the presence of the
pinning potential and g(E) the Green’s function in the
absence of pinning potential. The Green’s function G(E)
is obtained from inverting the Dyson matrix:

Nimp∑

k=1

[δi,k + gyi,yk
(E)Vyk

]Gyk,yj (E) = gyi,yj(E), (32)

where the Green’s function gyi,yk
(E) is given in Ap-

pendix A. The bound state energies correspond to the
poles of G(E).

3.2.2 Two pinning centers

In the commensurate case kF a0 = π/2 the energy levels
evolve smoothly as a function of the distance between the
two impurities (see Fig. 9a). In the incommensurate case
kFa0 = π/2 + δkF (see Fig. 9b) the energy levels fluctu-
ate strongly as the distance between the two impurities
is reduced. This shows that quantum mechanical inter-
actions among impurities enhance disorder effects in the
incommensurate case but not in the commensurate case.

3.3 Substitutional disorder

3.3.1 Open chains in the dimerized limit

Let us consider two semi-infinite dimerized chains ending
at sites “a” and “α” (see Fig. 8a). We note t0 = ta,α the
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Fig. 9. Evolution of the bound state energy levels as a func-
tion of the distance between the two pinning centers, in the
commensurate case kF = π/2 (a) and in the incommensurate
case kF = π/2 + δkF , with δkF = 0.02 (b). The energy is in
units of ∆ =

√
2ε and the distance is in units of ξ0 = 2vF /∆.

We used ε/t = 10−3 and V/t = 10.

value of the hopping between sites “a” and “α” (equal to
t + ε or t − ε) in the infinite chain. The Dyson equation
relates the Green’s functions gi,j of the infinite chain to
the Green’s functions Gi,j of the semi-infinite chain:

ga,a(E) = Ga,a(E) + t20Ga,a(E)ga,a(E) (33)

gα,α(E) = Gα,α(E) + t20Ga,a(E)gα,α(E), (34)

with ga,a(E) = gα,α(E) = E/(2t
√

2ε2 − E2). The solution
of (33) and (34) is

Ga,a(E) =
t

t20

√
2ε2 − E2

E




−1 + ηa

√

1 +
t20
t2

E2

2ε2 − E2




 ,

(35)
with ηa = ±1. In the case of two weak bonds in the chain
(see Fig. 8b) we find Gα,β = gα,β/D, with

D =
[
1 + t2a,αGa,agα,α

] [
1 + t2b,βGb,bgβ,β

]

− t2a,αt
2
b,βGa,aGb,bgα,βgβ,α. (36)

If the separation between the boundaries is large enough
the energy of the bound states can be expanded in the
small parameter exp (−R/ξ0) where ξ0/a0 = 2

√
2t/ε is

the zero energy coherence length. Since the bound states
are close to the Fermi energy we also expand Gα,β in
powers of E. If R = yβ − yα is even we find that one
bound state is generated at one end of the chain. In the
case R odd in Figure 8b we find two bound states at
E(±) = ±(ε/3) exp (−R/ξ0) corresponding to ηa = ηb =
−1. In the ground state E(−) is occupied with an elec-
tron and E(+) is occupied with a hole. The lowest neutral
excitation corresponds to an electron in the level E(+)

and a hole in the level E(−). This is in agreement with a
previous model developed for the spin-Peierls compound
Cu1−xZnxO3 [34] as well as in a qualitative agreement
with numerical simulations [41,42].
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Fig. 10. Evolution of the bound state energies as a function
of the distance R = |ya − yb| between the two impurities.
We use kF = π/2 + δkF , with δkF = 0 (a), δkF = 0.02 (b)
and δkF = 0.04 (c). We use the parameters ε/t = 10−2.
tα,α′/t = tβ,β′/t = 1/2. The dashed line is a fit to E/∆ =
±0.26 cos ((δkF )R) exp (−R/ξ0).

3.3.2 Substitutional disorder in CDWs and SDWs

We consider now a more realistic model of substitutional
disorder, both for commensurate and incommensurate
CDWs. We suppose that two substitutional impurities “re-
move” the sites “a” and “b” from the chain and that sec-
ond neighbor interactions tα,α′ and tβ,β′ couple the right
and left neighbors (see Fig. 8c). The model is similar to ref-
erence [34] proposed for Zn impurities in CuGeO3 except
that we consider here the incommensurate case. We cal-
culate the poles and residues as a function of the distance
R = |ya − yb| between the two impurities (see Fig. 10).
We use kF = k

(0)
F + δkF , with k

(0)
F = π/2 and show in

Figure 10 the Friedel oscillations of the bound state levels
for odd values of R. The phase of the Friedel oscillations
is shifted by π/2 for even values of R. We deduce from
the level crossings that there exits a change of sign in the
hopping amplitude between the two solitons as R is in-
creased.

Similarly to a model of doped spin-Peierls system [34]
substitutional disorder in CDWs and SDWs provides an
explanation to the power-law specific heat Cv ∼ Tα

observed in disordered CDWs and SDWs, and to the
susceptibility χ(T ) ∼ T−1+α observed in the CDW o-
TaS3 [27] (with the same value of α in the specific heat and
susceptibility experiments). In experiments on the SDW
(TMTSF)2PF6 [10], on changing the time constant in a
heat pulse experiment by a factor of 100, there is an in-
crease by a factor of 7 of the amplitude of the T−2 contri-
bution whereas the Tα contribution changes only by 20%,
and not in a systematic manner. In the commensurate
(TMTTF)2Br compound and also in a heat pulse exper-
iment, an increase of the time constant by a factor of 3
results in an increase of the T−2 term by a factor of 3 and
only an increase of the Tα term by 20%. This shows that
the Tα contribution to the specific heat can be interpreted
as an equilibrium property, which is the case if frustration
due to Friedel oscillations can be neglected as in a dilute
one dimensional model. Focusing on the SDW case we
consider only exchanges J(R) between nearest neighbor
solitons and disregard the changes of sign in J(R). The ex-

change distribution scales like P (|J |) ∼ |J |−1+xξ0 , where x
is the concentration of substitutional impurities [34]. The
energy of “active” pairs of spins is approximately given by
U =

∫ T

0
JP (J)dJ , where T is the temperature so that the

temperature dependence of the specific heat is given by
Cv ∼ T xξ0. The susceptibility is approximately given by a
Curie contribution for the fraction of “active” spin having
an energy smaller than T so that the susceptibility behaves
like χ(T ) ∼ T−1+xξ0 , leading to α = xξ0. Experimentally
α = 0.3÷1.2 as mentioned in the Introduction. In the case
of o-TaS3 we estimate ξ0 � 150÷ 450a0 in the spin sector
as mentioned previously and α = 0.3 obtained from spe-
cific heat and susceptibility. We deduce the concentration
of intrinsic substitutional impurities xint � 0.07 ÷ 0.2%.
The upper bound is comparable to the nominal concentra-
tion of extrinsic Nb impurities xext � 0.5% which might
explain why the exponent α in the experiment is the same
in the presence or absence of extrinsic impurities.

4 Conclusions

To conclude we have investigated several factors involved
in energy relaxation in disordered CDWs and SDWs. A
first factor is the role of commensuration. In the com-
mensurate case we find that the energy landscape is sym-
metric since the symmetry ϕ(x) → −ϕ(x) of the CDW
Hamiltonian is preserved by the impurity potential. As
a consequence the two energy minima are degenerate, a
property that can be obtained by a direct solution of the
sine-Gordon equation. We have shown that the degeneracy
exists for an arbitrary number of impurities contributing
to pinning the bisoliton. Experimentally there exists also
slow relaxation in commensurate systems, even though
faster than in the incommensurate case. The fully classical
model might be too schematic since the exact degeneracy
of the classical model is lifted by quantum tunneling. Nev-
ertheless it succeeds to explain the Cv ∼ T−2 specific heat
and the waiting time dependence of the prefactor in the
incommensurate case. We have proposed a model of clus-
tering in which the pinning energy is additive if two impu-
rities are at a distance smaller than the width ξ of the soli-
ton. The barrier distribution is exponential, with therefore
a power-law relaxation compatible with experiments (see
Ref. [12]). However bisolitons can be depinned in sequence,
not simultaneously. This is described qualitatively by the
dynamical renormalization group [12]. Within this treat-
ment we obtain also a power-law relaxation but with an
upper cut-off in the spectrum of relaxation times, in agree-
ment with experiments. The clustering model is neverthe-
less useful for addressing qualitatively the waiting time
effect in the specific ageing protocol used in experiments.

Finally we discussed another important factor: the na-
ture of disorder at the level of a single soliton and the pos-
sibility of quantum interactions among solitons that might
explain the differences between the spin-Peierls compound
Cu1−xZnxGeO3 that does not show slow relaxation and
orders antiferromagnetically, and the spin-Peierls com-
pound (TMTTF)2PF6 that shows slow relaxation without
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antiferromagnetic order. For this purpose we have gener-
alized to incommensurate systems a model of substitu-
tional disorder originally introduced for spin-Peierls sys-
tems [34]. We first treated the case of a strong pinning
impurity potential and found that the energy spectrum
of a single quantum mechanical soliton is constant as the
position of the soliton varies along the chain in the com-
mensurate case, whereas it varies in the incommensurate
case. Interactions among solitons enhance disorder effects
in the incommensurate case. We thus find a qualitative dif-
ference between the commensurate and incommensurate
cases in the quantum limit. For substitutional disorder in
the quantum limit we find interactions among solitons due
to Friedel oscillations. This can explain the experimentally
observed power-law contribution to the specific heat in in-
organic CDWs and SDWs in the limit of weak interchain
couplings.

The final picture for organic SDWs and CDWs is a
coexistence between strong pinning and substitutional dis-
order as well as a a coexistence between classical and quan-
tum effects. Further investigations would require a model
of collective effects interpolating between the classical and
quantum limits. Another ingredient that we did not dis-
cuss in detail is metallic island formed around impuri-
ties [43] that would lead to a phenomenology close to that
of substitutional disorder because both generate states at
the Fermi level for an isolated impurity, that can interact
through Friedel oscillations.

Finally, we have developed here the point of view of
including collective effects from the strong pinning limit.
The specific heat including quantum effects in the weak
pinning regime was discussed recently [44].
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Appendix A: Green’s functions of a charge
density wave

A.1 Canonical transformation

We use the Peierls Hamiltonian for charge degrees of free-
dom, the electronic part of which is given by equation (29),
where spinless fermions jump between neighboring sites
on a 1D chain. We suppose that the lattice is frozen and
therefore we do not include in the Hamiltonian the term
due to the lattice deformations. The Hamiltonian (29) is
diagonal in terms of the operators γk,R and γk,L, where R
and L label right and left-moving fermions:

H =
∑

k

[
Ek,Rγ

+
k,Rγk,R + Ek,Lγ

+
k,Lγk,L

]
, (A.1)

with

γ+
k,R = N (R)

k

[
c+k,R + B(R)

k c+k−2kF ,L

]
(A.2)

γ+
k,L = N (L)

k

[
c+k,L + B(L)

k c+k+2kF ,R

]
, (A.3)

and

Ek,R = 2t cos (ka0) − ε2

4t sin (kF a0)
1

(k − kF )a0
(A.4)

Ek,L = 2t cos (ka0) +
ε2

4t sin (kF a0)
1

(k + kF )a0
. (A.5)

The coefficients B(R)
k and B(L)

k are given by

B(R)
k = − ε

4t
exp (ikFa0)
(k − kF )a0

(A.6)

B(L)
k =

ε

4t
exp (−ikFa0)
(k + kF )a0

. (A.7)

The normalization coefficients are given by N (R,L)
k =

1/
√

1 + |B(R,L)
k |2. The Green’s functions deduced from

the spectral representations are given in Appendix A.

A.2 Green’s functions

The advanced Green’s function defined as gy1,y2(t1, t2) =
−iθ(t1−t2)〈{cy1(t1), cy2(t2)}〉 decomposes into the sum of
the four right (R) and left (L) combinations:

gy1,y2(t1, t2) = gR,R
y1,y2

(t1, t2) + gR,L
y1,y2

(t1, t2)

+ gL,R
y1,y2

(t1, t2) + gL,L
y1,y2

(t1, t2), (A.8)

where the “RR” Green’s function is defined by

gR,R
y1,y2

(t1, t2) =
∑

k1,k2

eik1y1e−ik2y2〈{ck1,R(t1), ck2,R(t2)}〉,

(A.9)
and similar expressions are obtain for the “RL”, “LR”
and “LL” Green’s functions. The spectral representation
of gR,R

y1,y2
is given by

gR,R
y1,y2

(E) =
∑

k

[
N (R)

k

]2

eik(y1−y2) (A.10)

×
{

1
E − Ek,R

+
|B(R)

k |2
E − Ek−2kF ,L

}
, (A.11)

and similar expressions are obtained for the three other
Green’s functions. After performing the integral over wave
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vector in the spectral representations we obtain

gR,R
y1,y2

(E) + gL,L
y1,y2

(E) =
2
3

1
2t sinkF

√
2ε√

2ε2 − E2

× sin
{
ϕ+

[
kF − E

4t sinkF

]
R

}
exp (−R/ξ(E))

+
1
3

1
2t sinkF

√
2ε√

2ε2 − E2

× sin
{
ϕ−

[
kF +

E

4t sin (kFa0)

]
R

}
exp (−R/ξ(E)),

(A.12)

where R = y1 − y2 is positive and ξ(E) =
4t sin (kF a0)/

√
2ε2 − E2 is the coherence length at a fi-

nite frequency. The sum of the “RL” and “LR” Green’s
functions is given by

gR,L
y1,y2

(E) + gL,R
y1,y2

(E) =

−
√

2
3

1
2t sin (kFa0)

√
2ε√

2ε2 − E2
exp (−R/ξ(E))

×
{

cos
[
kF + 2ϕ+

[
kF − E

4t sin (kF a0)

]
R− 2kF y1

]

− cos
[
kF −

[
kF − E

4t sin (kFa0)

]
R− 2kFy

]}
. (A.13)

We obtain similar expressions for R < 0.
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P. Monceau, F. Levy, Phys. Rev. Lett. 67, 1902 (1991)

9. J.C. Lasjaunias, J.P. Brison, P. Monceau, D. Staresinic,
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Monceau, J. Low Temp. Phys. 130, 25 (2003)

11. J.P. Bouchaud, J. Phys. I France 2, 1705 (1992); J.P.
Bouchaud, E. Vincent, J. Hamman, J. Phys. I France 4,
139 (1994); J.P. Bouchaud, D.S. Dean, J. Phys. I France
5, 265 (1995); C. Monthus, J.P. Bouchaud, J. Phys. A 29,
3847 (1996)
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